
The Generalized Support Software (GSS)
A Description of Its Current Software Development Process

Prepared by
the Software Engineering Laboratory

February 12, 1996



GSSPROC6.DOC i February 12, 1996

Table of Contents

1.  Purpose............................................................................................................................ 1

2.  Overview.......................................................................................................................... 2

2.1  Background.............................................................................................................. 2

2.2  GSS Architecture...................................................................................................... 2

2.3  GSS Process............................................................................................................. 3

3. Domain Analysis Phase...................................................................................................... 8

3.1  Preliminary Work...................................................................................................... 8

3.2  Initial Domain Analysis Phase................................................................................... 9

3.3  Sustaining Domain Analysis Phase.......................................................................... 10

3.4  Further Iterations of Domain Analysis..................................................................... 10

4.  Component Engineering Phase....................................................................................... 12

4.1  Preliminary Work.................................................................................................... 12

4.2  Initial Component Engineering Phase...................................................................... 12

4.3  Sustaining Component Engineering Phase............................................................... 13

4.4  Further Iterations of Component Engineering.......................................................... 13

5.  Mission Analysis Phase................................................................................................... 15

6.  Application Configuration Phase..................................................................................... 17

7.  Application Test Phase................................................................................................... 20

Figures

Figure 1.   The GSS Architecture Hierarchy.......................................................................... 4

Figure 2.   GSS Architecture Example................................................................................... 4

Figure 3.   GSS Component Development and Application Deployment Process.................... 5

Figure 4.   Overlapping Phases From Domain Analysis Through Application Testing............. 6

Figure 5.   Domain Analysis Phase Activities and Products.................................................... 9

Figure 6.   Progress of the Domain Analysis Team Through the Overall Domain.................. 11

Figure 7.   Component Engineering Phase Activities and Products....................................... 14

Figure 8.   Mission Analysis Phase Activities and Products.................................................. 16

Figure 9.   Application Configuration Phase Activities and Products.................................... 19

Figure 10. Application Testing Phase Activities and Products.............................................. 20



GSSPROC6.DOC 1 February 12, 1996

1. Purpose
This paper documents the software development process used by the Generalized Support
Software (GSS) project.  The purpose of the paper is to capture the current process in
order to subsequently evaluate it and recommend improvements to it.

To date the GSS process has been used to develop components for the Advanced Attitude
System (AAS) and, more recently,  for the Automated Mission Planning Tool (AMPT).
The AAS has been implemented using Ada 83, but there are plans to convert it to C++.
The AMPT is being implemented in C++.  Except for language-dependent differences, the
AMPT is following largely the same development process as is the AAS.  This paper
refers to their common development process as “the GSS process.”



GSSPROC6.DOC 2 February 12, 1996

2. Overview

2.1 Background
The Flight Dynamics Division (FDD) of NASA’s Goddard Space Flight Center develops
and maintains software applications in order to support spacecraft missions.  These
applications fall into three broad areas: spacecraft attitude support software, spacecraft
orbit support software, and mission planning software.  Although each new mission
usually requires the same kinds of applications as previous missions, each mission also has
unique hardware and mission requirements.  Because of this, each new mission has usually
required tailor-made applications which are similar in overall design and functionality to
previous applications but are different in detail.

In the past decade when the FDD has built new applications it has attempted to reuse from
previous applications as many software modules as possible, with as few modifications as
possible.  To a large extent the FDD has been successful in achieving high reuse.  In order
to further increase the amount (and the type) of reuse, and at the same time drastically
reduce the cycle time needed to field each new application, the FDD has embarked on a
new process in the last two years.  This process was first utilized for applications dealing
with spacecraft attitude support (AAS) and recently was expanded to include applications
dealing with mission planning (AMPT).

The overall goal of the GSS is to develop a strategic reuse asset library that enables much
more rapid deployment of flight dynamics applications. The GSS development process
achieves this rapid deployment by utilizing an object-oriented architecture in which the
reusable assets are the generalized specifications for the reusable software components, as
well as the reusable software components themselves, called classes.  Adopting this
architecture and process results in a paradigm shift from developing software applications
to configuring software applications.  These three key facets of GSS are:

• an architecture for rapid deployment of Flight Dynamics applications

• a strategic reuse library for Flight Dynamics classes

• a paradigm shift from developing software to configuring software for mission
support

2.2 GSS Architecture
Whereas classes (and their specifications) are the key elements of the reuse asset library,
the key elements of a configured software application are the objects that compose the
application.  An object is a specific instance of a class (called an instantiation in object-
oriented design terminology).  By way of analogy, a “size-12 brown Oxford” can be
considered an instance of the class “shoe.” A class has certain characteristics that define it
and distinguish it from other classes, just as all shoes share the general characteristics of
size, color, and style.  In object-oriented programming the class acts like a template. When
the programmer specifies a value for each of the class’s characteristics (size = 12, color =
brown, style = Oxford), the program instantiates the desired object from the class.



GSSPROC6.DOC 3 February 12, 1996

In the Flight Dynamics domain, an object is a model of some individual item of interest in
that domain. The object includes both the data parameters that describe the object and the
functions that specify appropriate processing.  Below are several examples of Flight
Dynamics classes.  From each of these classes one could instantiate several different
objects.

• three-axis stabilized attitude model

• axisymmetric nutating attitude model

• orbit model

• Sun-pointing coordinate system model

• V-slit Sun sensor model

• high-gain antenna model

• Moon model

• dipole geomagnetic field model

• star identification double match model

• quaternion estimator model

In addition to objects and classes, the GSS architecture hierarchy consists of categories,
and subdomains. All four terms are defined in Figure 1.  Figure 2 presents the GSS
Hardware Subdomain as an example of this architecture.  It demonstrates how the
Hardware Subdomain is composed of two categories, Sensor Models and Actuator
Models.  It then lists all six actuator classes in the Actuator Model Category.  The sensor
classes are too numerous to include all in the figure.

2.3 GSS Process
The GSS process, depicted in Figure 3,  consists of two overlapping subprocesses
involving five different teams.  In the Component Development Subprocess the Domain
Analysis Team analyzes the FDD domain, defines the classes, categories, and subdomains,
and writes the class and category specifications, which become part of the reusable asset
library.  As these specifications are created, the Component Engineering Team takes the
specifications and develops the code for these classes and categories.  These coded classes
and categories also become part of the reusable asset library.

In the Application Deployment Subprocess three other teams make use of the
specifications and code from the reusable asset library in order to configure, test, and
deliver FDD software applications.  As soon as some of the specifications are written by
the domain analysts, the Mission Analysis Team begins mapping these specifications
against the new mission’s requirements. In this way the team determines which classes and
categories are needed for the new mission.  The Mission Analysis Team also defines the
parameters of the specific objects which must be instantiated from the classes.  They pass
these application and object specifications along to the Application Configuration Team,
which then configures the application from the classes and categories in the reusable asset
library.  Finally the Application Test Team tests the new application and certifies it for
delivery to mission support for operational use.



GSSPROC6.DOC 4 February 12, 1996

Object: a model of some individual item of interest in the problem domain, including both
• data parameters that describe the object
• functions that specify appropriate processing

Class: a group of objects specified together
• all objects in a class share the same specifications of data and functionality
• a class specification is effectively a “template” for individual objects in the class

Category: a set of similar classes grouped together along with rules 
for using member classes for mission support.
• every class must belong to a category
• a category might have only one class
• a category specifies a common functional interface for its member classes
• each class must specify at least all functions specified for its category
• a class may also specify additional functions unique to that class

Subdomain: a group that contains all categories necessary
 to specify the functionality in a specific high-level area
 of the overall problem domain.

Reuse Library

Applications

Figure 1.  The GSS Architecture Hierarchy

Hardware Subdomain

Sensor Model 
Category

Actuator Model 
Category

Reaction Wheel Class 
Thruster Class 

Magnetic Torquer Class 
High-Gain Antenna Class 

Solar Array Class 
Gimballed Platform Class 

V-Slit Sun Sensor Class 
Analog Sun Sensor Class 

CCD Star T racker Class 
V-Slit Star Sensor Class 

Tachome ter Class 
etc.

Figure 2. GSS Architecture Example



GSSPROC6.DOC 5 February 12, 1996

Each subprocess can be thought of as consisting of several overlapping phases, one for
each of the major teams in the subprocess, as follows.

1. Component Development Subprocess

1.1. Domain Analysis Phase

1.2. Component Engineering Phase

2. Application Deployment Subprocess

2.1. Mission Analysis Phase

2.2. Application Configuration Phase

2.3. Application Testing Phase

Figure 4 portrays how these five phases overlap in time during the populating of the reuse
asset library and the deployment of the first application of a given type, such as the first
telemetry simulator.  The darker the team bar, the heavier the involvement of the team at
that time.  Note that the Domain Analysis Phase and the Component Engineering Phase
are each subdivided into two subphases, an initial phase and a sustaining phase.  During
the initial phase each team populates the reuse asset library with the stock of items
(specifications from the analysts, code from the engineers) believed to be necessary and
sufficient to configure the given application.  During the respective sustaining phases, the

• Develop acceptance
test plan

• Conduct acceptance test
• Evaluate test results

Reuse Asset Library

Configured
Application

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

• Follow standard
specification
concepts

• Use object-oriented
analysis

• Map object designs to
mission requirements

Class & Category Code

• Follow standard
implementation
concepts

• Use code
generation tool

• Add subunits code

• Use configuration
architecture

• Use generalized
classes

• Develop glueware

Classes &
Categories

Specifications Mission
Analysts

Component
Engineers

Application
Configurers

Domain
Analysts

Appl. &
Object
Specs

Application
Testers

Specifications

  Component
Development

Application
Deployment

Figure 3.  GSS Component Development and Application Deployment Process



GSSPROC6.DOC 6 February 12, 1996

analysts and engineers modify or add to these items in the asset library when new
capabilities are specified for existing assets or in response to requests from other teams.

The goal of the domain analysts and component engineers is to populate the reuse asset
library with specifications and code for all the classes and categories required to define the
Flight Dynamics domain.  Once this is accomplished, the three teams doing application
deployment can deploy application after application for mission after mission, with only
modest assistance from the domain analysts and component engineers in their “sustaining”
roles.

In order to benefit from the reuse asset library while it is under construction, the work of
the two teams doing component development is coordinated with the work of the three
teams doing application deployment in the manner shown in Figure 4.  That is, the domain
analysts and component engineers focus first on creating the classes and categories that
are required to complete the first application type that is targeted, for example a telemetry
simulator. Once the classes and categories for the telemetry simulator domain are created,
the three application deployment teams are ready to configure one telemetry simulator
after another (for one mission after another) with little help from the domain analysts and
component engineers.  Therefore, as the domain analysts and component engineers shift
into “sustaining” the classes and categories of the telemetry simulator domain, they
simultaneously begin to focus their energies on creating the classes and categories
necessary to configure the next type of target application, such as a real-time attitude
determination system (RTADS).

When it comes time to configure another telemetry simulator, for a subsequent mission,
the Initial Domain Analysis Phase and the Initial Component Engineering Phase are not

Domain
Analysts

Component
Engineers

Time

Initial Domain
Analysis
Phase*

Sustaining Domain
Analysis Phase

Initial Component
Engineering
Phase*

Sustaining Component
Engineering
Phase

Application
Testers Application

Testing Phase

Application
Configurers Application Configuration Phase

Mission
Analysts Mission Analysis Phase

Team

Domain analysts and 
component engineers 
move on to define and
populate new classes
needed for other 
applications. 

* The Initial Domain Analysis Phase and the Initial Component Engineering Phase are executed only for the first
example of each type of application, such as the first telemetry simulator, the first RTADS.

Component Development Process

Application Deployment Process

Figure 4. Overlapping Phases from Domain Analysis through Application Testing



GSSPROC6.DOC 7 February 12, 1996

repeated.  These phases have already defined and coded the majority of classes and
categories necessary for any telemetry simulator.  New mission requirements for the next
telemetry simulator might require modifications to these existing classes and categories or
might possibly require adding a few new categories or classes.  These are done in the
sustaining subphases.

Each phase is discussed separately in the following sections of this paper.  The major
activities and products for each of these phases are summarized in the accompanying
figures.



GSSPROC6.DOC 8 February 12, 1996

3. Domain Analysis Phase
The activities performed during the Domain Analysis phase correspond roughly to the
activities defined for the Requirements Analysis, Preliminary Design, and Detailed Design
phases of the Software Engineering Laboratory (SEL) Recommended Approach.  (This
phase builds on the Requirements Definition activities of past and present missions, as
described below. The Requirements Definition activities for future missions are performed
by the mission analysts during the mission analysis phase, described in a later section.)
The primary difference between GSS and the Recommended Approach is that the scope of
the Domain Analysis work focuses on an entire domain (family of related systems for
multiple missions) instead of on a single mission system.

Because the domain is so large, however, the domain analysis team follows an iterative
process. In the first iteration they define in detail the classes and categories needed for a
telemetry simulator (while keeping in mind as much as possible that many of these classes
and categories will also be used by other applications). In each subsequent iteration, the
team then expands its focus to include all additional classes and categories required for
one or more other application types.  Each expansion sometimes exposes the need to
redefine some previously defined classes and categories.  In this way the team gradually
approaches its goal of defining the entire FDD domain.

3.1 Preliminary Work
The domain analysis team begins by developing an initial high level model of the entire
attitude support problem domain.  Then the team develops several iterations of each of
several partial subdomains within this overall domain.  This exercise allows the team to
evolve and refine the standards for documenting the domain architecture (design) and the
standards for developing the detailed specifications for the categories and classes.  These
standards are documented in the GSS Specification Concepts document.

At this point the team is ready to begin applying these standards by writing the detailed
specifications for that segment of the problem domain required for the first chosen
application type (a telemetry simulator), keeping in mind the particular needs of the first
mission that will configure one of these applications (TRMM).  The domain analysis work
is divided into two subphases, an initial domain analysis phase and a sustaining domain
analysis phase.  See Figure 5.



GSSPROC6.DOC 9 February 12, 1996

3.2 Initial Domain Analysis Phase
During the initial domain analysis phase, the domain analysts review requirements for
telemetry simulators in the domain of  past, present, and (when possible) future missions
to define the superset of functionality that bounds this segment of the problem domain.
Afterwards they begin creating an architecture (design) for the subdomains, categories,
and classes in the telemetry simulator domain.  This architecture can be viewed as the

Initial Domain Analysis Phase

Preliminary Work ProductsActivities

Sustaining Domain Analysis Phase (coincides with later iterations of the Initial Domain Analysis Phase)

Modify existing class and category specifications and
add new class and category specifications in response to 

• changes to mission requirements
• new mission requirements
• problem reports from component engineers

• New and modified class and category specifications

Analyze requirements for the ... application type

Analyze requirements for the 2nd application type

Analyze requirements for 1st application type

Define/revise subdomains

Define/revise categories

Define/revise classes

Write/revise detailed functional specifications:

• Domain analysis member drafts specification
• Another team member reviews specification
• Entire domain analysis team reviews spec.
• Team leader approves specification
• Component engineering team reviews spec.
• Revise specification

• New/revised list of categories and classes for
   the core subdomain (classes and categories
   that can be used in all applications across
   the domain)

• New/revised list of categories and classes for
   the application subdomains

• New/revised dependency diagrams that depict
   the dependencies between the categories

• New/revised GSS Functional Specifications

• Volume 1 - Core Software
• Volume 2 - Application Software

• Initial database of requirements (functionality)
   common across all applications in domain

• Initial high-level model of entire domain

• Specifications concepts document

Analyze requirements for entire domain

Design several partial subdomains

Evolve standards for
• documenting domain architecture
• developing detailed specifications

Figure 5.  Domain Analysis Phase Activities and Products



GSSPROC6.DOC 10 February 12, 1996

preliminary design for the telemetry simulators to be configured later.

The domain analysts also assign responsibilities (member functions and data) to each class
and define with which other classes each class needs to collaborate (depending on the
services provided by the class). Ultimately, the domain analysts write the detailed
functional specifications for each class and category.  These detailed specifications can be
viewed as the detailed design for the telemetry simulators.

The method adopted by the domain analysts for developing the design is a flexible,
iterative process that combines both bottom-up and top-down approaches. For example,
sometimes a set of classes is defined first and then is divided into subdomains. Sometimes
a subdomain is defined first and then is partitioned into categories and classes. In some
iterations classes might be transferred from one subdomain to another, or an already
defined subdomain might be split into two or more subdomains.

In order to ensure their accuracy, the detailed specifications pass through a thorough
review process.  First each specification is written by one member of the domain analysis
team, reviewed by another member of the team, then reviewed by the whole team, and
finally approved by the team leader. Then the component engineering team reviews the
specification and submits change requests to the domain analysts team.  The domain
analysts review the change requests and make modifications where necessary.

The initial domain analysis phase ends when the domain analysts have completed
specifying all categories and classes that they believe are necessary to produce a telemetry
simulator.

3.3 Sustaining Domain Analysis Phase
During the sustaining domain analysis phase, domain analysts develop specification
modifications for the category and class functional specifications based on new mission
requirements and changes to existing mission requirements.  They also develop
specification modifications in response to problem reports received from the component
engineering team.  This work includes modifying existing class and category specifications
and adding new class and category specifications.

3.4 Further Iterations of Domain Analysis
After completing the initial domain analysis phase for the telemetry simulator domain, and
while continuing to carry out the sustaining domain analysis phase, the domain analysis
team begins the initial domain analysis phase for the RTADS domain.  The team writes
specifications for many new classes and categories that are required for RTADS but were
not required for telemetry simulators.  Where the RTADS domain overlaps the telemetry
simulator domain, some rework is required.  For example the hardware subdomain is split
into two categories, one for sensor models and one for actuator models.

When the initial domain analysis phase for the RTADS domain is well along, the domain
analysis team begins the initial domain analysis phase for the Attitude Determination
System (ADS) domain, which shares much functionality with the RTADS domain.  This
iteration requires few new classes and less rework than the preceding iteration.  Next the



GSSPROC6.DOC 11 February 12, 1996

team expands its focus to the mission planning domain. Figure 6 depicts  these overlapping
domains and the order in which the domain analysis team iterated through them.

Telemetry
Simulator
Domain

Real-Time Attitude
Determination
System (RTADS)
Domain Attitude

Determination
System (ADS)
Domain

Mission
Planning
Domain

1

2

3

4

Figure 6. Progress of the Domain Analysis Team Through the Overall Domain



GSSPROC6.DOC 12 February 12, 1996

4. Component Engineering Phase
In the component engineering phase, the component engineers develop the code for the
GSS classes and categories based on the generalized specifications.  The activities
performed in the component engineering phase can be thought of as roughly
corresponding to some of the activities in the SEL Recommended Approach’s Preliminary
Design, Detailed Design, and Implementation phases.

The activities of the component engineers are closely linked to the iterative activities of
the domain engineers. Consequently, the component engineers first implement the classes
and categories necessary for the telemetry simulator domain, then implement any
additional classes and categories necessary for the RTADS domain, ADS domain, and so
on.  Each expansion may require some rework on previously implemented classes and
categories.

4.1 Preliminary Work
The component engineers work with the domain engineers to first define (1) the standard
design for the classes and categories, (2) the standard design and behavior model for the
applications programs to be configured from the classes and categories in the asset library
(including a list of valid decision points and user actions), and (3) standards for developing
the code for the classes and categories.  These standards are documented in the GSS
Implementation Concepts for each implementation language.

Since by agreement all classes share a standard design, the component engineering team
produces a tool (called Classgen) to automatically generate the standard portions of  each
class.   Once the Classgen code generator has been tested, its output doesn’t need to be
inspected.

The concept development and Classgen development is carried out in a long series of
prototypes that develop support code and standard component designs.  In order to
reduce rework, the process requires that the Classgen input be a configured product, and
that generated code be kept in separate files from the stubs for the user code.

Much of this architectural design work would traditionally be considered part of
preliminary design.  In GSS the design duties can be thought more naturally as falling
under functional architecture (primarily the responsibility of the domain analysts in the
domain analysis phase) and implementation architecture (primarily the responsibility of
the component engineers in the component engineering phase).

4.2 Initial Component Engineering Phase
Like the domain engineering phase, the component engineering phase also consists of two
subphases, initial component engineering and sustaining component engineering.  In the
initial component engineering phase, the component engineers work with the domain
engineers to populate the reuse asset library with reusable software components (classes
and categories).  Based on input files written by the component engineers, the Classgen
code generator generates 75% of the class code.  The component engineers then write the



GSSPROC6.DOC 13 February 12, 1996

remaining class code (i.e., code for subunits of class packages that implement the class
functionality), plus all category code. The component engineers document any deviations
from the functional specifications.  They also inspect code and conduct unit tests.  The
initial component engineering phase ends when the component engineers have completed
implementing all categories and classes that are believed necessary to produce a telemetry
simulator.

4.3 Sustaining Component Engineering Phase
During the sustaining component engineering phase, the component engineering team
receives draft specification modifications and specifications for new classes and categories
from the domain engineering team.  They review the draft specification changes with the
domain engineers and return the updated specifications to the domain engineers.  Once the
specifications have been approved by the domain engineering team, the component
engineers implement the changes to the classes and categories and develop the software
for the new classes and categories.

The area of unit testing sometimes contains one noteworthy difference between the initial
component engineering phase process and the sustaining engineering phase process.
During the initial component engineering phase, the code for the classes and categories is
unit tested, and unit test plans and results are inspected.  In the sustaining engineering
phase, unit testing for new and/or changed classes might be waived.  If unit testing is
waived, the GSS process relies on code inspections—together with integration testing by
the application configuration team—to find errors before application acceptance testing.
The flexibility to forego unit testing follows from the experience that inspections are
effective at finding errors and that unit testing is expensive.  In order for inspections to be
deemed sufficiently effective to waive unit testing, however, the process requires (1) a
mature code generator, (2) developers with high language experience to act as inspectors,
and (3) inspectors who know specification concepts and the particular specification.  Items
(1) and (2) are both true for code being developed in Ada83, but are not true yet for code
being developed in C++.

4.4 Further Iterations of Component Engineering
After completing the initial component engineering phase for the telemetry simulator, and
while continuing to carry out the sustaining component engineering phase, the component
engineering team begins the initial component engineering phase for the RTADS domain.
The team implements new classes and categories that are required for RTADS but were
not required for telemetry simulators.  Where the RTADS domain overlaps the telemetry
simulator domain, some rework is required.  When the team enters the sustaining
component engineering phase for the RTADS domain, it also begins focusing on the initial
component engineering phase for the ADS domain.  In this way the team continues
expanding its focus until all classes and categories for the entire Flight Dynamics domain
are implemented.  See Figure 7 for a summary of the activities and products for the
component engineering phase.



GSSPROC6.DOC 14 February 12, 1996

Initial Component Engineering Phase

Preliminary Work ProductsActivities

Sustaining Component Engineering Phase 
(coincides with later iterations of the Initial Component Engineering Phase)

Modify existing class and category code and
add new class and category code in response to

• changes to mission requirements
• new mission requirements
• problem reports

• New and modified class and category code

Review class and category specifications for the ...

Review class and category specifications for the 2nd

Review class and category specifications for the 1st
  application type

Develop Classgen input file (classes only)

Run Classgen code generator (classes only)

Develop code for categories

Develop code for subunits

Prepare documentation for classes and categories

Inspect code for classes and categories

Unit test class and category code; inspect results

Configure class in controlled library

• Updates to class and category specifications
  (delivered to domain engineering team)

• Classgen input file (defines information about
  class data structures, member functions,
  dependencies, etc.)

• Classgen output

• Code for categories
• Code for subunits of class package that
  implements the required functionality of class

• Documented deviations from the functional
  specifications

• Completed inspection forms (to PAO)
• Certified class code.  Note: the code generated
  by Classgen is not inspected.

• Certified unit test plan
• Validated code

• SEL COFs for new classes & categories
• SEL CRFs for modified classes and categories
• Configured class & category software

• Behavior model for the application, including
   list of valid decision points and user actions

• Implementation Description Concepts for each
   implementation language

• Classgen code generator and validated output

Define standard design for classes and categories

Define standard design and behavior model for
applications programs to be configured

Define standards for developing code for classes and
categories

Produce and test the Classgen code generator

Figure 7. Component Engineering Phase Activities and Products



GSSPROC6.DOC 15 February 12, 1996

5. Mission Analysis Phase
The mission analysts define the system operations concepts and requirements for the flight
dynamics applications to be developed for a new spacecraft mission as described in the
SEL Recommended Approach’s Requirements Definition phase.  These analysts produce
the standard system operations concepts and system requirements specifications
documents.

The mission analysis phase is the first phase in the Application Deployment Process.  The
mission analysis phase can begin as soon as the necessary specifications have been written
by the domain analysts and while the component engineers are implementing the classes
and categories.

Instead of producing the detailed functional specifications for each major application, the
mission analysts work with the GSS domain analysis team to review the generalized
specifications for the GSS classes and categories in order to determine which classes can
be used to build the required flight dynamics applications for the mission.  During this
review process, they determine which classes and categories can be used verbatim, which
require modifications, and which—if any—need to be written.  The new classes may be
generalized or "mission or application specific.”  If the domain analysts and mission
analysts determine that a new class can be developed in generalized form, the domain
analysis team adds the detailed functional specifications for the new class to the GSS
Generalized Functional Specifications documents.  On the other hand, if the domain
analysts and the mission analysts determine that a new class is mission or application
specific, then the mission analysts document the specifications for the class in the mission
specification document for the application.

The results of the review of the GSS classes are documented in a mission specification
document for each application to be developed for the mission.  This document contains
the following information:

• List of classes to be configured into the application

• List of objects to be instantiated from the classes and the mission specific values for
the parameters in the objects.

• List of displays and reports to be generated by the application

• Map of which displays and reports are to be configured for each application decision
point

• For each display/report, the names of the parameters to be displayed, and display
formats.

• Specifications for any new mission/application specific classes, or
mission/application specific modifications to a generalized class.

The mission analysis phase is complete when the final versions of the mission application
specification documents for each application needed for the mission are completed and the
system is operational.  The mission analysts deliver the system operations concepts,
system requirements, and application specification documents to the application
configuration team and the application test team.  Updates to the generalized



GSSPROC6.DOC 16 February 12, 1996

specifications for the mission are developed by the domain analysis team and delivered to
the component engineering team for production.  The component engineering team
delivers the updated classes to the application configuration team, which configures the
updated classes into the mission applications.  Figure 8 presents a summary of the mission
analysis phase activities and products.

Define system operations concepts

Define system requirements

Map system requirements to GSS classes

Define displays and reports

Define application behavior model

Develop Application Specification document

Develop Specifications for new and modified classes

 

• Operations Concepts document
• Operations Concepts Review (OCR)

• System Requirements document
• System Requirements Review (SRR)

• Classes to requirements mapping by application
• List of modified classes
• List of new classes (generalized and/or mission
   specific)

• Displays and report definitions, containing the
  parameters to be displayed and the display formats

• List of displays to be configured at each decision
   point

• Application Specification document for each
   application to be configured for mission support

• Updated GSS Generalized Specification documents
   (for generalized classes)
• Detailed class specifications included in the
   application specification document
   (for mission/application specific classes)

ProductsActivities

Figure 8.  Mission Analysis Phase Activities and Products



GSSPROC6.DOC 17 February 12, 1996

6. Application Configuration Phase
The application configuration phase begins after the mission analysis team delivers the
application specification documents.  The phase start also requires that the component
engineers have previously populated the reuse asset library with the classes and categories
stipulated by the domain analysis team as necessary for configuring the given application.

As the discussion of the previous phases has shown, the GSS process does not fit naturally
into a traditional model of sequential non-overlapping software development phases.
Instead, a model consisting of overlapping phases, with each phase identified with a major
activity, makes more sense.  In keeping with this model, it is more natural to include the
activity of fixing configuration software defects in the same phase as the writing of the
configuration software.  Thus the latter end of the application configuration phase
overlaps the application testing phase, as was shown previously in Figure 4.

Guided by the application specification documents, the application configuration team
develops the application configuration data files, which include the parameter definition
file, application displays files, and the application message file.  If the mission analysis
team identified requirements for any new generalized classes, the component engineering
team implements these new classes in the reuse asset library.  The application
configuration team, however, implements any mission specific classes identified by the
mission analysts, as well as any additional mission specific configuration code, colloquially
referred to as “glueware.”

The application may be built in a series of builds.  The scheduling of builds will usually
need to be coordinated with the release schedules of the User Interface and Executive
(UIX) and the Mission Operations Center (MOC) software.  It may also have to consider
the timing of releases of the reuse asset library and releases of other GSS applications
(telemetry simulator, RTADS, Heads Up Display (HUD), telemetry processor (TP), etc.).

The application configuration team certifies its configuration data files and all mission
specific configuration code in one-on-one inspections.  The code is kept in a controlled
library, but the application configuration team does not submit SEL Component
Origination Forms (COFs) or SEL Change Report Forms (CRFs) for any of this mission
specific software. The original motivation for not submitting these forms was that the
application configuration process would quickly evolve to a situation where very little
glueware would be required.  This appears more likely when the generalized classes and
categories are implemented in C++ than in Ada 83.  The decision not to submit COFs and
CRFs for mission specific software continues to be evaluated.

The team processes the application parameter files through the UIX pre-processor in order
to create the Codebase database necessary for access by UIX software.  Following this,
the team develops an informal integration test plan and conducts the integration testing.

After the conclusion of integration testing, the application configurers support the
application test team. They begin by training the application test team in the use of the
application software.  Then they hold the Acceptance Test Readiness Review (ATRR).
Following this meeting, the application configurers support the application test team in



GSSPROC6.DOC 18 February 12, 1996

setting up and executing the acceptance tests.  In particular, the application configurers
use the interactive debugger to display specific intermediate program values.  When the
application testers uncover software defects in the configurers’ code and files, the
application configurers fix these and rebuild the application’s executable image.  Defects
found in the generalized classes and categories are fixed by the component engineering
team.  Defects found in the UIX software are fixed by the UIX developers.

The application configurers also develop the user’s guide and the system description
document during this phase.  The application user’s guide is “built on” the information
contained in the UIX user’s guide and the information contained in the application
functional specification.  The UIX user’s guide provides information on how to use the
UIX to run an application.  The application functional specification defines the mission
specific default values for the application input parameters and provides information on
the content of the application displays.  The application user’s guide provides references
to the UIX user’s guide and the application functional specification where appropriate.

The application system description document is “built on” the GSS functional
specifications documents and on the GSS implementation description document.  The
implementation description document contains the high level design of the UIX based
applications.  The functional specifications documents contain the class designs for the
classes and categories in the reuse asset library.  The application system description
document only contains application specific design information and appropriate references
to the GSS documentation.



GSSPROC6.DOC 19 February 12, 1996

During the application configuration phase the application configuration team handles its
own software configuration management.  Only at the end of the application configuration
and application testing phases is the application program delivered to the Flight Dynamics
Configuration Management (FDCM) group, which is responsible for software
configuration management during operations.  See Figure 9 for a recapitulation of the
application configuration phase activities and products.   

ProductsActivities

Develop application configuration data files

Develop mission specific classes and
  mission specific configuration code

Inspect (one-on-one) application data files and
   mission specific classes and configuration code

Process configuration data files through the UIX
   pre-processor

Develop informal integration test plan and
  integration test the application

Support the application test team
• Train application test team in use of application
• Hold the ATRR
• Help set up and execute acceptance test
• Use interactive debugger to display specific
   intermediate program values

Fix defects found in configuration data files and
  mission specific code

Write user’s guide and system description
  documents

Deliver application program to FDCM

• Parameter definition file
• Application displays file
• Application message file
• Mission specific classes
• Mission specific configuration code (“glueware”)

• Certified data files and code

• Codebase database for access by UIX software

• Informal integration test plan
• Integration tested application program and
   support files

• Acceptance Test Readiness Review (ATRR)
  materials
• Debugger output

• Acceptance tested application

• User’s guide
• System description document

• Configured application software

Figure 9. Application Configuration Phase Activities and Products



GSSPROC6.DOC 20 February 12, 1996

7. Application Test Phase
The application testing phase coincides with the latter portion of the application
configuration phase.  During the testing phase the application testing team conducts the
acceptance testing of the configured application.

Prior to the ATRR, the application testers write the application test plan and prepare
acceptance test input data.  They also receive training from the application configurers in
the use of the application software.  The testers then participate in the ATRR

Following this meeting, the test team conducts the acceptance testing, assisted by the
application configuration team as described in the previous section.  Afterwards the
application test team evaluates the test results.  They document test results in detailed
reports and test item checklists.  They document software failures in problem reports and
help determine the source of failures.  After the software defects are fixed (by application
configurers, component engineers, or UIX developers, as appropriate), the application
testing team retests the application.  Finally the test team certifies the application for
delivery to mission support for operational use.  The activities and products of the
application testing phase are summarized in Figure 10.

ProductsActivities

Develop application acceptance test plan (draft)

Prepare acceptance test input data

Attend ATRR

Revise acceptance test plan

Conduct acceptance test of configured application
  and evaluate test results
• Generate detailed reports
• Generate test item checklists
• Document software failures in problem reports
• Work with mission analysts and application
  configurers to determine probable source of
  a failed test item
• Retest software fixes

Certify application for delivery to mission support
  for operational use

• Draft acceptance test plan

• Acceptance test input data

• Acceptance Test Readiness Review (ATRR)
   materials

• Updated acceptance test plan

• Acceptance test detailed reports
• Acceptance test item checklists
• Software problem reports

• Validated software application

Figure 10. Application Testing Phase Activities and Products


